A Simple Thermistor Interface to an ADC

This article describes a simple and cost effective method of measuring temperature using a thermistor connected in a half-bridge configuration. The goal is to perform a ratiometric measurement such that the $V_{\text {REF }}$ source voltage to the divider is the same as the reference to the analog-to-digital converter (ADC) used to measure the voltage at VT.

There are many circuits and measurement methods that can be used with a thermistor to determine the temperature. The simplest approach is to use a half-bridge circuit also known as a resistor divider, shown in Figure 1. The goal is to perform a ratiometric measurement such that the $\mathrm{V}_{\text {REF }}$ source voltage to the divider is the same as the reference to the ADC used to measure the voltage at V_{T}. The R 1 resistance is known.

Figure 1.
The equation for V_{T} is shown in Equation 1.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{T}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{T}}} \cdot \mathrm{~V}_{\mathrm{REF}} \tag{Eq. 01}
\end{equation*}
$$

The equation for the ADC result is shown in Equation 2.

$$
\begin{equation*}
\mathrm{ADC}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{~V}_{\mathrm{REF}}} \cdot 2^{\mathrm{N}} \tag{Eq. 02}
\end{equation*}
$$

where ADC is the ADC result and $\mathrm{N}=$ the ADC resolution.
Substituting Equation 1 into Equation 2 yields Equation 3 and the $V_{\text {REF }}$ term is cancelled out. This leaves the R_{1} value, which is known, and the ADC result, which is measured. The R_{1} resistor should be a temperature stable resistor otherwise it will affect the accuracy of the temperature measurement.

$$
\begin{equation*}
\mathrm{ADC}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{T}}} \cdot 2^{\mathrm{N}} \tag{Eq. 03}
\end{equation*}
$$

Rearranging Equation 3 and solving for R_{T} yields Equation 4.

$$
\mathrm{R}_{\mathrm{T}}=\left(\frac{2^{\mathrm{N}}}{\mathrm{ADC}}-1\right) \cdot \mathrm{R}_{1} \quad \quad \text { Eq. } 04
$$

After the value for R_{T} is calculated, the temperature can then be calculated by using the equation provided by the thermistor vendor. An example of an equation is shown in Equation 5, which is for a NTC thermistor.

$$
\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)=\left[\mathrm{b}_{0}+\mathrm{b}_{1}\left(\ln \mathrm{R}_{\mathrm{T}}\right)+\mathrm{b}_{3}\left(\operatorname{lnR}_{\mathrm{T}}\right)^{3}\right]^{-1}-273.25 \quad \text { Eq. } 05
$$

The thermistor vendor would provide the value for the coefficients $b 0, b 1$, and $b 3$. The equation can be solved for directly or a lookup table can be used if easier. Simple linear interpolation between the table data points is required to gain the proper resolution. A plot of the NTC thermistor is shown below in Figure 2.

Figure 2.

